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NetEPD: A Network-Based Essential Protein Discovery Platform

Jiashuai Zhang, Wenkai Li, Min Zeng, Xiangmao Meng, Lukasz Kurgan, Fang-Xiang Wu, and Min Li�

Abstract: Proteins drive virtually all cellular-level processes. The proteins that are critical to cell proliferation and

survival are defined as essential. These essential proteins are implicated in key metabolic and regulatory networks,

and are important in the context of rational drug design efforts. The computational identification of the essential

proteins benefits from the proliferation of publicly available protein interaction datasets. Scientists have developed

several algorithms that use these interaction datasets to predict essential proteins. However, a comprehensive

web platform that facilitates the analysis and prediction of essential proteins is missing. In this study, we design,

implement, and release NetEPD: a network-based essential protein discovery platform. This resource integrates

data on Protein–Protein Interaction (PPI) networks, gene expression, subcellular localization, and a native set of

essential proteins. It also computes a variety of node centrality measures, evaluates the predictions of essential

proteins, and visualizes PPI networks. This comprehensive platform functions by implementing four activities, which

include the collection of datasets, computation of centrality measures, evaluation, and visualization. The results

produced by NetEPD are visualized on its website, and sent to a user-provided email, and they are available to

download in a parsable format. This platform is freely available at http://bioinformatics.csu.edu.cn/netepd.
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1 Introduction

Rapid developments and the widespread use of high-
throughput techniques have resulted in the accumulation
of a large quantity of information on Protein–Protein
Interactions (PPIs)[1–4]. Generally, these PPI data are
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represented as a graph, where nodes represent proteins
and edges denote interactions between proteins[5].
Essential proteins are a very important type of proteins
and play important roles in biological activities. If one
of them has been removed, the organism cannot survive
or develop[6]. The determination of essential proteins
can help us to understand the minimum requirements of
a cell[7]. In addition, it can provide theoretical support
for finding new drugs and determining the underlying
mechanism of diseases[8–11]. The centrality-lethality rule
proposed by Jeong et al.[12] indicates that the essentiality
of protein molecules is closely related to the degree of
a node in the PPI networks and provides a theoretical
basis to identify and study essential proteins. Numerous
topological features extracted from the PPI networks
have been used to predict essential proteins[13–17].
Moreover, other types of relevant information, such as
gene expression data and protein domains, have been
used to predict essential proteins[18–22].

The large number and breadth of the abovementioned
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efforts to characterize and predict essential proteins
motivate the development of resources that would
support these endeavors. To this end, we design,
implement, and release NetEPD: a network-based
essential protein discovery platform. While several tools
that can support some of the activities related to the
prediction of essential proteins have been developed,
they have a range of limitations. First, most of them
are desktop applications and this requires the end users
to install and run them locally on their hardware. The
installation process could be cumbersome, especially
when environment variables have to be configured,
and this could present an unsurmountable challenge
for less computer-savvy users. Second, they rarely
provide access to preloaded data, and instead require
the end users to preprocess and load PPI networks,
gene expression data, and other relevant datasets. Third,
they do not offer facilities to compare the results of
essential protein predictions. Overall, none of these
tools offers a comprehensive suite of features that would
cover the computation of a broad range of topological
features, preloaded datasets, supports of assessment
activities, and visualization of the resulting networks
online. Section 3.2 provides a detailed comparative
analysis. Our solution addresses these shortcomings.
NetEPD is a convenient webserver that does not require
installation and performs all computations on the server
side. It incorporates commonly used and preprocessed
datasets (PPI networks, gene expression datasets, and
annotations of subcellular locations of genes), and
integrates the calculations of over 20 topological features
in order to support the prediction of essential proteins.
NetEPD also uses a dataset of essential proteins to

evaluate and compare predicted results by different
algorithms and provides multiple options to visualize
PPI networks. In short, NetEPD is a comprehensive and
convenient platform that supports research toward the
prediction and characterization of the essential proteins.

2 Implementation

NetEPD is designed and developed as a freely
available webserver. The scope and architecture of
NetEPD are summarized in Fig. 1. Users only need
a modern web browser and an internet connection to
access and use our resource. They can process their
queries and view the results directly at the NetEPD
website (http://bioinformatics.csu.edu.cn/netepd). Our
platform was designed and developed using Java
technology, which makes it secure and portable. More
specifically, the webserver was implemented with
HTML5, CSS3, and JavaScript using the Spring
and Hibernate development framework. This type of
framework also facilitates maintenance and futures
expansion for the NetEPD platform.

2.1 Datasets integrated into NetEPD

Research has shown that several types of information are
useful for the identification of essential proteins[23, 24].
For instance, Li et al.[23] combined gene expression,
orthology, and subcellular localization to augment PPI
networks with spatial and temporal information, showing
that such augmentation is beneficial for the prediction of
essential proteins. Correspondingly, NetEPD includes
these spatiotemporal characteristics. In particular, our
platform contains four types of information: essential
proteins, PPI networks, gene expression data, and

Fig. 1 Scope and architecture of the NetEPD resource. NetEPD combines two software frameworks: Spring and Hibernate,
and implements four activities: collection of datasets, computation of network centrality measures, evaluation, and visualization.
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subcellular localizations. These data are preloaded
for two popular model species: house mouse (Mus
musculus) and yeast (Sacchromyces cerevisiae). These
data have been preprocessed by mapping to the UniProt
database[25] to ensure the consistency between datasets.

PPI networks. NetEPD includes four PPI datasets
which can be selected by the user for topological
analysis. These datasets were collected from
BioGRID[26], Database of Interacting Proteins
(DIP)[27], Munich Information Center for Protein
Sequences (MIPS)[28], and Molecular INTeraction
database (MINT)[29] resources. We preprocessed these
datasets to remove repeated protein–protein interactions
and self-interactions. This is needed in the context of
characterization and prediction of essential proteins. The
contents of these four datasets are summarized in
Table 1.

Gene expression data. Yeast gene expression data
were downloaded from the gene expression omnibus
database (No. GSE3431)[30] in the national center for
biotechnology information and included in NetEPD.
This dataset contains three metabolic cycles of yeast,
each with 12 time intervals of approximately 25 min[31].

Subcellular localization data. Subcellular
localization information of proteins was collected
from the COMPARTMENTS database[32] and
incorporated into NetEPD. Proteins are assigned
into one of eleven cellular compartments: cytoskeleton,
cytosol, endoplasmic reticulum, endosome, extracellular,
mitochondrion, Golgi apparatus, lysosome, nucleus,
peroxisome, and plasma.

Dataset of essential proteins. The list of essential
protein data was obtained from the Database of Essential
Genes (DEG)[33]. This dataset has 8393 eukaryotic
proteins. We mapped 3224 of them to mouse and yeast
proteomes. This protein list was loaded into NetEPD to
assist with the characterization of essential proteins and
assessment of their predictions.

2.2 Topological features generated from the PPI
networks

One of the arguably strongest determinants that can be
used to identify essential proteins is their topological
Table 1 Summary of the four PPI datasets included in
NetEPD.

Dataset source Number of proteins Number of PPIs
BioGRID 63 885 852 865

DIP 26 600 72 823
MIPS 940 1151
MINT 32 668 93 742

feature in the PPI networks. In particular, node centrality,
which quantifies the degree of connectivity of proteins in
these networks, provides useful information to identify
essential proteins. There are many ways to quantify the
centrality values. NetEPD implements a broad selection
of 22 popular centrality measures which are listed and
briefly described in Table 2.

Previous studies have shown that some biological
information is related to more reliable PPI networks
construction[51–55]. For instance, Wang et al.[54]

proposed a model-based scheme for integrating gene
expression and subcellular localization information to
construct spatial and temporal active PPI networks.
NetEPD also constructs spatiotemporal characteristic
subnetworks[54, 56] through three kinds of data, and then
uses different centrality methods in subnetworks to
predict essential proteins. It can not only reduce the
noises or invalid neighbor nodes, which are adjacent to
the protein nodes in the raw datasets, but also enhance
the prediction precision of essential proteins.

An example of how NetEPD analyzes the yeast
PPI network with the help of the centrality measures
is shown in Fig. 2. This example demonstrates how
the Degree Centrality (DC) measure can be used to
rank input proteins, where this ranking can be used to
annotate putative essential proteins. These results can be
downloaded as a parsable excel file.

2.3 Support for assessment of predictions of
essential proteins

NetEPD can be used to predict essential proteins using
the information extracted from PPI networks (centrality
measures), gene expression levels, and subcellular
locations. These predictions can be compared against the
preloaded list of essential proteins. NetEPD facilitates
this comparison by implementing a variety of evaluation
measures including sensitivity (SN), specificity (SP),
Negative Predictive Value (NPV), Positive Predictive
Value (PPV), accuracy (ACC), and F-measure (F).

SN D
TP

TPC FN
(1)

SP D
TN

TNC FP
(2)

NPV D
TN

TNC FN
(3)

PPV D
TP

TPC FP
(4)

F D
2SN � PPV
SNC PPV

(5)
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Table 2 List and description of centrality measures included in NetEPD.
Method Short description Reference
Degree Centrality (DC) The degree of centrality of a node refers to the number of neighbor nodes

directly connected to it.
[12]

Network Centrality (NC) The network centrality of a node is the sum of the aggregation coefficients of
all neighboring edges of the node.

[13]

Betweenness Centrality (BC) The betweenness centrality of a node is the proportion of the shortest path
through the node in all the shortest paths of the network.

[34]

Closeness Centrality (CC) The closeness centrality of the node is inversely proportional to the sum of the
shortest path from the node to all other nodes in the protein network.

[35]

Eigenvector Centrality (EC) The eigenvector centrality of a node refers to the corresponding component of
the main eigenvector of the network’s adjacency matrix.

[35]

Semi-Local Centrality (SLC) The semi-local centrality involves the fourth-order neighbor information of
the node.

[36]

Local Average Connectivity (LAC) The local average connectivity of a node indicates the public node relationship
of the node and its neighbours.

[36]

Lindex The value of a node’s lindex is the largest integer of the neighbours that have
at least k degrees.

[37]

Eccentricity (ECC) The eccentricity value of a node is defined as the maximum of its shortest
distance from other nodes in the network.

[38]

Neighborhood Connectivity (NeiC) The neighborhood connectivity of a node is defined as the average connectivity
of all neighboring nodes of the node.

[39]

Mapping Entropy Centrality (MEC) This method is analogous to the concept of�information entropy�and is
mainly defined by the degree centrality.

[40]

Localized Bridging Centrality
(LBC)

The localized bridging centrality of a node is defined as the product of its own
median centrality and the bridging coefficient.

[41]

Local Clustering Coefficient based
on Degree Centrality (LCCDC)

The local clustering coefficient based on degree centrality is defined as the
product of a node’s degree centrality and the local clustering coefficient.

[42]

Subgraph Centrality (SC) The subgraph centrality of a node refers to the total number of closed loops
that the node participates in.

[43]

Weighted Index Centrality (WIC) It is a method based on the weighted index of virtual nodes to evaluate the
influence of node propagation in complex networks.

[44]

Maximum Neighborhood
Component (MNC)

The MNC is defined as the maximum neighborhood component of a subgraph
that consists of a node’s neighborhoods.

[45]

Density Maximum Neighborhood
Component (DMNC)

To better judge the criticality of nodes in biological networks, DMNC concept
was proposed based on the MNC.

[45]

PageRank The PageRank algorithm sorts nodes based on the link structure of the network. [46]
LeaderRank The LeaderRank algorithm was proposed by adding a “ground node” and the

bidirectional edges with other nodes in the network.
[47]

K-shell decomposition (K-shell) The k-shell decomposition method determines the influence of the nodes
according to the position of the nodes in the network.

[48]

Mixture Degree Decomposition
(MDD)

In the degree of mixture decomposition method, all nodes in the network
are divided into different shells depending on their own residual degree and
exhaustion degree node.

[49]

Information Centrality (IC) The information centrality of a node essentially measures the average length
of the harmonics of all paths with nodes as endpoints.

[50]

ACC D
TPC TN

The number of proteins
(6)

where True Positive (TP) is the number of correctly
predicted essential proteins, True Negative (TN) is the
number of correctly predicted nonessential proteins,
False Positive (FP) is the number of nonessential proteins
incorrectly predicted as essential proteins, and False
Negative (FN) is the number of essential proteins

mispredicted as the nonessential proteins.
Moreover, NetEPD provides a jackknife line diagram

to holistically compare the effectiveness of different
predictions. First, the predictions are sorted in
descending order for each prediction method, then
the cumulative number of known essential proteins
is determined by counting and the jackknife line is
drawn. The jackknife line is a relationship between
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Fig. 2 An example of the use of the NetEPD platform. The panel on the left shows a screen that creates a new job. Input data
can be either pasted into the “Input Data” panel or uploaded from a file. The panel on the right shows how the DC measure is
used to rank input proteins.

the number of predicted essential proteins (x-axis) and
the cumulative number of native essential proteins that
match the putative essential proteins (y-axis).

Figure 3 shows an example of how NetEPD can be
used to perform an assessment. Users can upload their
list of essential proteins or use the preloaded list that was
collected from the DEG resource. Next, the user must
set up a cutoff to select putative essential proteins from
a ranked list of proteins, where this ranking reflects the
putative propensity for essential proteins. In Fig. 3, the
top 10% proteins of the sorted proteins (515 proteins) are
selected as the putative essential proteins and the proteins
are sorted using three centrality measures: DC, LAC,
and NC. After clicking “evaluate”, NetEPD generates
“Evaluation” panel for these three predictions. This
panel includes a table with the six evaluation measures
and the jackknife line diagram (Fig. 3). This diagram
directly and conveniently compares effects of using
multiple rankings on the quality of prediction of essential
proteins.

2.4 Visualization

The visualization of the underlying PPI network
provides useful clues to understand the topological
properties of selected (essential) proteins. NetEPD uses
the Cytoscape.js graphical library[57] to visualize PPI
networks. Four different types of visual representations
that are available in NetEPD are shown in Fig. 4. They

Fig. 3 Evaluation of predictions of essential proteins based
on the DC, LAC, and NC centrality measures. The table in
the top panel provides values of the six evaluation measures
including SN, SP, NPV, PPV, ACC, and F. The jackknife line
diagram is shown in the bottom panel.

include classical view (top-right corner), grid (bottom-
right corner), concentric (middle bottom), and breadth-
first layout (bottom left). NetEPD also provides an
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Fig. 4 Visualization of the PPI networks in NetEPD.

image export functionality that saves the resulting visual
representation in png.

3 Workflow and Comparison with Similar
Tools

3.1 Workflow

The NetEPD’s workflow to characterize and predict
essential proteins includes four steps:

Step one. Create and set up a new job using the
interface shown in Fig. 2. This requires completing of the
following five sub-steps: (1) Enter self-defined identifier
in the “JobID” field. (2) Select the centrality measures to
be used for the prediction of the essential proteins in the
“Algorithms” panel. (3) Upload or select the preloaded
PPI network, gene expression data, and subcellular
localization data. (4) Provide a brief description of your
job using the “Job Description” panel. (5) Provide
your location and email, which are used for notification
when the submitted job is completed. NetEPD offers
four types of centrality calculations: PPI network
centrality, spatial network centrality, temporal network
centrality, and spatiotemporal network centrality. Users
select a particular type of calculation by providing
the corresponding data: PPI network centrality is
computed when only the PPI data are available; spatial
network centrality is calculated when the PPI and
subcellular localization data are provided; temporal
network centrality is used when the PPI and gene
expression data are available; and spatiotemporal
network centrality is computed when all three sources

of data are present. The preloaded datasets (BioGRID,
DIP, MIPS, and MINT) have been preprocessed to map
proteins and remove redundant data. Selection of these
datasets requires the user to also select the corresponding
organism.

Step two. Submit the job by clicking the “submit”
button. An incorrect setup of the job triggers an error
message that explains how to fix the problem. A correctly
set up job is redirected into a first-come-first-serve queue
of jobs. Upon reaching the top of the queue, the job is
executed and results are produced. The user is notified by
email when the job is completed. The notification email
includes a hyperlink to the webpage with the results.

Step three. Evaluate the results. Users can assess the
candidate essential proteins computed in Step two with
the known essential proteins, which are either provided
by the user or preloaded by NetEPD. This selection
can be made using the interface shown in Fig. 3. After
specifying the criteria to select putative essential proteins
in the field next to the “evaluate” button, the user clicks
this button to generate the assessment. The assessment
includes values of six performance measures (SN, SP,
NPV, PPV, ACC, and F) and the jackknife line diagram
is shown in the bottom panel (Fig. 3).

Step four. Visualize the results. Users can visualize
the topology of the PPI network by clicking the
“network” button. Four different network layouts are
available (Fig. 4). Users can interact with the resulting
graphs using a mouse to zoom in and out (using the
mouse wheel), to select and recolor specific proteins
and interactions. The resulting network graphs can be
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exported in png format into the user’s workspace.

3.2 Comparison with other essential protein
prediction tools

There are several tools for PPI network analysis that
can be used to support the prediction of essential
proteins. CytoNCA[58] is a Cytoscape plugin that
calculates eight centrality measures and provides a visual
representation of the PPI networks. CentiServer[59] is
an online resource that focuses on the computation of
a comprehensive set of network centrality measures
without support for other tasks such as visualization and
evaluation. CentiScaPe[60] and Network Analyzer[61] are
both based on Cytoscape, and they are geared toward the
topological analysis of PPI networks with no support
for computation and evaluation of essential protein
predictions. Hubba[45] is a web-based service that finds
key nodes in the molecular interaction networks, such
as PPI networks, but it lacks the ability to evaluate and
visualize the results. NetworkX[62] is a toolkit in the
Python language that focuses on the characterization and
visualization of network topologies.

Table 3 compares these six tools with NetEPD
based on five characteristics: the number of included
topological measures, available online, inclusion
of preloaded data, evaluation of predictions, and
visualization of PPI networks. The currently available
tools offer either two or three of these features. NetEPD
is the only platform that offers all five features. The key
advantages of NetEPD include the following:

(1) It features a web-based implementation, which
eliminates the need for installation and execution on the
end users’ hardware.

(2) It enables the integration of PPI network, gene
expression, and subcellular localization data for two
organisms. The availability of multiple types of datasets,
which cover temporal and spatial characteristics, allows
for more accurate prediction of essential proteins.

(3) It allows for the implementation of a diverse set

of six evaluation measures and provides a jackknife line
diagram for convenient comparison of predictions.

(4) It features four modes to visualize the topology of
PPI networks.

4 Conclusion

NetEPD is a feature-rich and user-friendly web-based
tool for the characterization and prediction of essential
proteins and the visualization of PPI networks. The
platform combines data on the PPI networks, gene
expression, and subcellular localization. NetEPD
implements a variety of centrality measures that are
implemented to incorporate the spatial (localization)
and temporal (expression) data, which provide useful
information for the accurate prediction of essential
proteins. Our platform computes a broad set of
evaluation indicators to quantify the comparison of the
predictions of essential proteins with a preloaded (or
user-defined) list of native essential proteins. NetEPD
also visualizes PPI networks using several layouts to
facilitate understanding of the topological features that
are characteristic to the essential proteins.

Inspired by the recent successes of deep learning
approaches in the analysis of protein datasets[63–67],
we plan to extend the NetEPD framework with a
deep learning-based module that is based on recently
published predictors[67]. Additionally, there are some
network construction methods from the perspective of
network regulation[68–70], cellular signal transduction[71],
and network control[72, 73], which can help to improve
the accuracy of essential protein prediction. NetEPD
now has datasets of two species (Mus musculus and
Saccharomyces cerevisiae) derived from BioGRID,
DIP, MIPS, and MINT. In the furture, we will add
more species, such as human, into the NetEPD from
the Human Protein Reference Database (HPRD)[74],
STRING[75], and IntAct[76]. This will further assist users
to accurately predict the essential proteins.

Table 3 Comparison of key features offered by different tools for PPI networks analysis.

Tool Number of included
topological measures Available online Inclusion

of preloaded data
Evaluation

of predictions
Visualization

of PPI networks
CytoNCA 8 7 7 X X

CentiServer 55 X 7 7 7

CentiScaPe 12 7 7 7 X

Network Analyzer 11 7 7 7 X

Hubba 6 X X 7 7

NetworkX 10 7 7 7 X

NetEPD 22 X X X X



Jiashuai Zhang et al.: NetEPD: A Network-Based Essential Protein Discovery Platform 549

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. 61832019, 61622213, and
61728211) and the 111 Project (No. B18059).

References

[1] S. J. Wodak, J. Vlasblom, A. L. Turinsky, and S. Y. Pu,
Protein–protein interaction networks: The puzzling riches,
Current Opinion in Structural Biology, vol. 23, no. 6, pp.
941–953, 2013.

[2] P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson,
J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P.
Pochart, et al., A comprehensive analysis of protein–protein
interactions in Saccharomyces cerevisiae, Nature, vol. 403,
no. 6770, pp. 623–627, 2000.

[3] X. Peng, J. Wang, W. Peng, F. X. Wu, and Y. Pan, Protein–
protein interactions: Detection, reliability assessment and
applications, Brief. Bioinform., vol. 18, no. 5, pp. 798–819,
2017.

[4] A. Buntru, P. Trepte, K. Klockmeier, S. Schnoegl, and E. E.
Wanker, Current approaches toward quantitative mapping
of the interactome, Front. Genet., vol. 7, p. 74, 2016.

[5] A. L. Barabási and Z. N. Oltvai, Network biology:
Understanding the cell’s functional organization, Nature
Reviews Genetics, vol. 5, no. 2, pp. 101–113, 2004.

[6] E. A. Winzeler, D. D. Shoemaker, A. Astromoff, H. Liang,
K. Anderson, B. Andre, R. Bangham, R. Benito, J. D.
Boeke, H. Bussey, et al., Functional characterization of the
S. cerevisiae genome by gene deletion and parallel analysis,
Science, vol. 285, no. 5429, pp. 901–906, 1999.

[7] N. Vishveshwara, M. E. Bradley, and S. W. Liebman,
Sequestration of essential proteins causes prion associated
toxicity in yeast, Mol. Microbiol., vol. 73, no. 6, pp. 1101–
1114, 2009.

[8] N. Judson and J. J. Mekalanos, TnAraOut, a transposon-
based approach to identify and characterize essential
bacterial genes, Nature Biotechnology, vol. 18, no. 7, pp.
740–745, 2000.

[9] G. Lamichhane, M. Zignol, N. J. Blades, D. E. Geiman,
A. Dougherty, J. Grosset, K. W. Broman, and W. R.
Bishai, A postgenomic method for predicting essential
genes at subsaturation levels of mutagenesis: Application to
Mycobacterium tuberculosis, Proceedings of the National
Academy of Sciences of the United States of America, vol.
100, no. 12, pp. 7213–7218, 2003.

[10] C. G. Zhang, Essential functions of iron-requiring proteins
in DNA replication, repair and cell cycle control, Protein &
Cell, vol. 5, no. 10, pp. 750–760, 2014.

[11] F. H. Zhang, H. Song, M. Zeng, Y. H. Li, L. Kurgan, and
M. Li, DeepFunc: A deep learning framework for accurate
prediction of protein functions from protein sequences and
interactions, Proteomics, doi: 10.1002/pmic.201900019.

[12] H. Jeong, S. P. Mason, A. L. Barabási, and Z. N. Oltvai,
Lethality and centrality in protein networks, Nature, vol.
411, no. 6833, pp. 41–42, 2001.

[13] J. X. Wang, M. Li, H. Wang, and Y. Pan, Identification
of essential proteins based on edge clustering coefficient,
IEEE/ACM Transactions on Computational Biology &
Bioinformatics, vol. 9, no. 4, pp. 1070–1080, 2012.

[14] X. Y. Li, W. K. Li, M. Zeng, R. Q. Zheng, and M.
Li, Network-based methods for predicting essential genes
or proteins: A survey, Briefings in Bioinformatics, doi:
10.1093/bib/bbz017.

[15] G. S. Li, M. Li, J. X. Wang, Y. H. Li, and Y. Pan,
United neighborhood closeness centrality and orthology
for predicting essential proteins, IEEE/ACM Transactions
on Computational Biology and Bioinformatics, doi:
10.1109/TCBB.2018.2889978.

[16] X. R. Liu, Z. Y. Hong, J. Liu, Y. Lin, A. Rodrı́guez-
Patón, Q. Zou, and X. X. Zeng, Computational methods
for identifying the critical nodes in biological networks,
Briefings in Bioinformatics, doi: 10.1093/bib/bbz011.

[17] G. S. Li, M. Li, W. Peng, Y. H. Li, Y. Pan, and J. X. Wang,
A novel extended Pareto optimality consensus model for
predicting essential proteins, J. Theor. Biol., vol. 480, pp.
141–149, 2019.

[18] X. J. Lei, J. Zhao, H. Fujita, and A. D. Zhang,
Predicting essential proteins based on RNA-Seq, subcellular
localization and GO annotation datasets, Knowledge-Based
Systems, vol. 151, pp. 136–148, 2018.

[19] W. Kim, Prediction of essential proteins using topological
properties in GO-pruned PPI network based on machine
learning methods, Tsinghua Science and Technology, vol.
17, no. 6, pp. 645–658, 2012.

[20] W. Peng, J. X. Wang, Y. J. Cheng, Y. Lu, F. X.
Wu, and Y. Pan, UDoNC: An algorithm for identifying
essential proteins based on protein domains and protein-
protein interaction networks, IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 12, no. 2,
pp. 276–288, 2015.

[21] Y. T. Fan, X. H. Hu, X. W. Tang, Q. Ping, and W. Wu,
A novel algorithm for identifying essential proteins by
integrating subcellular localization, in Proc. 2016 IEEE Int.
Conf. Bioinformatics and Biomedicine, Shenzhen, China,
2016, pp. 107–110.

[22] B. H. Zhao, J. X. Wang, X. Y. Li, and F. X. Wu, Essential
protein discovery based on a combination of modularity and
conservatism, Methods, vol. 110, pp. 54–63, 2016.

[23] M. Li, Z. B. Niu, X. P. Chen, P. Zhong, F. X. Wu, and Y. Pan,
A reliable neighbor-based method for identifying essential
proteins by integrating gene expressions, orthology, and
subcellular localization information, Tsinghua Science and
Technology, vol. 21, no. 6, pp. 668–677, 2016.

[24] J. W. Luo and Y. Qi, Identification of essential proteins
based on a new combination of local interaction density and
protein complexes, PLoS One, vol. 10, no. 6, p. e0131418,
2015.

[25] M. Magrane and UniProt Consortium, UniProt
knowledgebase: A hub of integrated protein data,
Database, vol. 2011, p. bar009, 2011.

[26] A. Chatr-Aryamontri, R. Oughtred, L. Boucher, J. Rust, C.
Chang, N. K. Kolas, L. O’Donnell, S. Oster, C. Theesfeld,



550 Tsinghua Science and Technology, August 2020, 25(4): 542–552

A. Sellam, et al., The BioGRID interaction database: 2017
update, Nucleic Acids Research, vol. 45, no. D1, pp. D369–
D379, 2017.

[27] I. Xenarios, E. Fernandez, L. Salwinski, X. J. Duan, M. J.
Thompson, E. M. Marcotte, and D. Eisenberg, DIP: The
database of interacting proteins: 2001 update, Nucleic Acids
Research, vol. 29, no. 1, pp. 239–241, 2001.

[28] H. W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt,
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